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In applying the mentioned procedure to the obtained particular solutions the relation- 
ships to which the quantities ak,s and bk,s in (1.5) are subject must be kept in mind 

nr ?+h. (6) = u;% zr, zr+k, b,, r+ k @) = u;2P-1Xw+~, 2rt h-r1 (8.2) 

where 

x 
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In conclusion, let us note that the parameter 0 < 6 < 50. If the radii of shell curvature 

areK>O, R,>O, (K,>R), theni,J6,(oc; ifR>0, K1<OandIIZ,I>IRI, 
then 0 < 6 < 1. The values 6 = i and 00 correspond to cylindrical and spherical 

shells. The value 6 = 0 corresponds to a shell of hyperbolic type for I&Z] = lRll (pseu- 
dosphere). 
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The game problem of bringing onto a prescribed set a controlled object whose motion 
is described by linear differential equations is considered. The conditions under which 

a saddle point exists in the class of generalized strategies in the differential game under 

investigation are derived. A procedure for constructing the players’ generalized optimal 
strategies is proposed. 

1, Let us consider the game problem of bringing onto the prescribed set M a control- 
led object whose motion is described by the system of differential equations 

dx 
- = A (t) z + B (t) u 7 C.(t) u _a (1 .I) 



676 N. N. Krasovskii and A. I. Subbotin 

Here z = {X1, . . ., Z, } is an n-dimensional phase vector and U is an r -dimen- 
sional controlling force chosen by the first player ; D is the s-dimensional control of the 
second player; A (t), B (t), C (t) are continuous matrices of the appropriate dimen- 
sions. We assume that the instantaneous values of the controlling forces are subject to 
restrictions of the form 

u E u*, v E v* (4 *2) 

where u* and V* are convex bounded closed sets in the spaces E, and E, , respectively. 
We assume that the set M satisfies one of the following conditions : 

1) the set Mis a convex bounded set in E,; 
2) the set M is a linear subspace of the space E ,, . 

The payoff in the game under investigation is the quantity 6 , i.e. the instant of arri- 
val of the phase vector z [t] at the prescribed set M. The first player seeks to minimize 
the quantity 6 ; the second player seeks to maximize it. 

Such games problems are investigated in [l- 111; elements of the constructions em- 
ployed in these papers are used in the present study. 

We shall adhere to the following definitions of the players’ strategies and of the solu- 

tion of the system (1.1). 

Definition 1.1. The “strategy”or “control” u= U (z, t) (I/ =v(z,t)) is the 
law which places the ( n + 1 )-dimensional vector {x, t} in correspondence with the 
convex closed set u (2, t) c U* (V (5, t) c V*). We assume below that the strate- 
gies are semicontinuous above by inclusion (*). 

D e fin i t i on 1.2. The “solution” of system (1.1) generated by some pair of strate- 

gies U = U (I, L), V = V (5, t) is any absolutely continuous vector function x = 
= I [t] which satisfies the conditions . . . . 

x[t,] = x0, q EA (t)z[t] + B(t)U (z[t], t) -C(t)V(x [tl, t) (1.3) 

for almost all t > to. 
Here t, is the initial instant, x0 is the initial value of the phase vector, and AX + 

$ BU - CV is the algebraic sum of the vector Ax and the sets BU and - CV, 
i.e. the sum of all vectors of the form As + Bu - Cv, where E l-7, v E T/‘. 

Definition 1.1 reflects the character of the information available to the players in the 
course of the game ; specifically, each player knows at each instant t = ‘t > to the 

realized value of the phase vector x = z [z] . The players do not know the future beha- 
vior of the oponent for t > T. The existence of a solution of system (1.1) in the sense 
of Definition 1.2 can be proved by taking the limits of the corresponding broken Euler 

lines (e.g. see [lo-121). 
We shall describe the construction of the strategy V = V,(x,f) which guarantees to 

the second player a result which is arbitrarily close to being optimal. The conditions used 
in constructing the strategy I’, (z, t) are formulated in Sect. 3 below. 

2. In this section we formulate an ancillary theorem which we shall use in Sect. 3 to 
construct the strategy JJ = V, (5, t). 

Let us be given some time interval [to, x] during which the second player intends to 

*) The set U (x, t) is semicontinuous above by inclusion at the point {x*, t*) if for any 
E > 0 there exists a 6 > 0 such that for any vector u E lr (s, t), where I] {s,G - {I*, 
t*} 116 6 there exists a vector U* E 1’ (z*, t*) such that 11~ - u* \\ < E. 
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avoid arrival of the point X [t] at the set iki. We denote by G a bounded set in E,, such 

that the condition x [tj e G for t, < t < x is fulfilled for the solution x .= X [t] 

of system (1.1) corresponding to any summabb controls u = U (t), 2, = 21 (t) which 
satisfy restrictions (1.2). Such a set G always exists. 

Let us suppose that there exists a function L = L (x, t) which satisfies the following 

requirements : 
1) the function L = L (x, t) is defined and continuously differentiable with respect 

to x and t in some open domain D ; the point {X0, t,} E D. 

2) If {X, t}ED, then x E M. 
3) Let r,,,the set of points {X, t> for which X E G, t, < t -5 x - a, 

L (X, t) < b. The third condition imposed on the function L = L (5, t) is as follows: 
for any values of the parameters a > 0, b > L (x0, to) there exists a number 

E (a, b) > 0 such that ra,* E&b) c D, where Fe is the &-neighborhood of the set I’ 
(i. e, the set of points of the form gl + qs, where Qi E_ r, //qsfl < E, and where the 

symbol 11 Q I/ denotes the Euclidean norm of the vector q). 
4) Let us consider the quantity 

@(x, t, u, u)=(grad,L(x, t))’ A(t)x+B(t)u-C(t)v) -j-w (2.1) 

(where the prime denotes aansposition) defined for the points { 5, t) E LI. Since 
@ (X, t, u, V) can be expressed as a sum of two terms, the first of which depends on u 
only and the second on v, we have 

mine = mai,@ (2, t, u, v) = max~rnin~~ (X, t, 24, v) = ffi” (5, t) 

(u E u*, v E V”) (2.2) 

The final condition which we impose on L (5, t) is that it satisfy the inequality 

@O (X, 8) < c, for {x, t) E 13 n (G x [to, xl) (c = const) (2.3) 
We denote by V” (2, t) the set of vectors which ensure that 

max,(grad,l (x, t))’ C (t) v for VEV* (2.4) 

(in the case (grad& (x, t))‘C (t) = 0 we set 1” (X, 8) = v*). We can show that if 
{I, t} E D the strategy V” (x, t) satisfies Definition 1.1. 

The following statement is valid. 
The ore m 2.1. If these exists a function L = L (z, t) satisfying conditions (l)- 

-(4), then any solution of the system 

dx/dt cii~ A (t) x +B (t) U (x, t) - C (t)v”(s, t), x It,] = x0 (2.5) 
where U (X, t) is an arbiaary permissible strategy defined for {x, t} f?% G X It,, xl, 

i@ontinuable to the instant t = x, ; for any solution of system (2.5) we have x [t] g 
EMforall to< t<X. 

Proof. We know that the solution 5 = 5 [tl of the system 

dz / dt 6% A (t) 2 + W fz, t), x [loI = 2!@ (2.6) 

is continuable to the instant t = t* as long as (5 ltl,t> E N for all t, < t < t*, where 
N is the open set of points {r, t) in which W ( z, t) is semicontinuous above by inclusion, 
convex, bounded, and closed. Hence, in order to show that any solution of system (2.5) 

is continuable to the instant t = x we need merely show that 

{x [tl,t} ED for t0 < t <x (2.7) 
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for any solution z = x [t] of system (2.5). 
Let us assume that the opposite is true. Let t = t, < r. be the instant when 

t l;yW [tl, 0 = @*, t,) c D 

for some solution x = 5 [t] Zf *system (2.5). 

We note that this solution satisfies the inclusion 

(2.8) 

We also note that by 

for t < t, along the 

L [tl = L (5 ItI t 4. 
This means that 

L 
Setting 

{z ]tl, 0 E D for to< t<t, (2.9) 

virtue of (2.1)-(2.4) 

dL It] / C/t < c (2.10) 

indicated solution in the case of absolutely continuous function 

(z [tl, t) Q L (x0, to) + c (t - to) for t < t. 

a=x-t*, b = L (x0, to) + c (x - to) 

(2.11) 

(2.12) 

we obtain the corresponding number E = E (a, b) > 0 by way of condition (3). Let 
t’ < t, be an instant such that ,, E,l,l _ E* ,, G ‘,, F (2.13) 

where 5 [t’] = {I [t’], 0, E* : {z*, t,). Since t’< t,, condition (3) together with 
(2. ll), (2.12) imply that 

S, (5 IfI) c D (2.14) 

where S, (E) is the e-neighborhood of the point E. From (2.14),(2.13) we infer that 
S,,, (g*) c D . This contradicts assumption (2.8). We have therefore established the 

validity of condition (2.7). By virtue of (a), condition (2.7) implies that 5 [tl E M 
for to Q t < x for any solution of system (2.5). The statements of Theorem 2.1 have 

been proved. 

3. Let us formulate the conditions whose fulfilment means that the function L = 
= L (x, t) can be constructed in such a way that the control T/’ = V” (x, t), whose 

construction we have described in Sect. 2 , guarantees a result arbitrarily close to the 
optimal one to the second player. Some remarks concerning the class of problems (l.l), 

(1.2) which satisfy the conditions below will be made at the close of the present section. 
In constructing the function L = L (x, t) we shall make use of the quantity e” (5, 

t, o) defined as follows. 
Let G1 (‘6, o) be the set of points g E E, for each of which there exists a permissi- 

ble program control u = u (t), ‘t <l t < o, which brings the system 

dx/dt = A (t) x + B (t) u (3.1) 

from the state x (‘6) = 0 to the position z (0) = g. A “permissible program control” 
is a summable vector function u = u (t), ‘G < t < (T, which satisfies condition (1.2) 
almost everywhere. The set G, (T, (5) is called the “attainability domain” of object 

(3.1) which corresponds to the initial and final instants a and o , respectively. 
In similar fashion we introduce the notion of the attainability domain G, (z, o) of 

the controlled object whose motion is described by the system 

dx/dt = A (t) 1c + C (t) zi (3.2) 

Let M’be a closed e-neighborhood of the set M,i. e. the set of points of the form 

gl ‘+ g,, where gl E M, II q2 II Q E; X (a, t) is an n x n matrix which satisfies 
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the equation dX (CT, t) / do = ./l (a) X (0, t); 
X (t, t) = E is an identity matrix. We define e” (z, t, o) as the smallest value of 

the parameter E for which we have the inclusion 

G, (z, 0) c G, (T, o) + X (CT, -c) II: - M’ (3.3) 

As above, the expression on the right is an algebraic sum of the sets G,,- M’ and of 
the vector Xx. The set G (z, T, (J) = G, (7, u) + X (cr, 7) z - ME can be inter- 
preted as the attainability domain constructed for the final instant o > ‘G for a control- 
led object whose motion is described by the system 

dzc’ydt = A (t) x(l) + B (t) u (t) - ~6 (a - t), z (z) = J: (3.4) 

In addition to the permissible program control U = u (t) we have here a fictitious 
impulsive control p6 (0 - t), where p E Me. The quantity E’ (z, t, o) can be 
defined as in [lo], i.e. as the smallest value of the parameter E for which there is 

e-absorption of one of the control processes by the other (in this case process (3.4) 
absorbs process (3.2)). The initial problem can be considered as the problem of game 

encounter of controlled objects (3.4), (3.2). where Eq. (3.4) describes the motion of the 
pursuer and Eq. (3.2) that of the pursued object (target); the initial position of the pur- 
suer is dl)[tol = 2’; the initial position of the pursued object is z [to] = 0. 

We can show that if M is a convex bounded closed set, then condition (3.3) is equiva- 
lent to the inequality 

for II l II < 1 (3.5) 

where p 1, p 2, p are the supporting functions of the sets G,, G,, - M , respectively (*). 
If M is a linear subspace of the space E,, then condition (3.3) is equivalent to the 

inequality 

minr {pi*(L 7, 0) + e 11 2 1 + 2’ (X (0, T) “)*-_P*~ (I, T, 0)) > 0 (3.6) 

for II J II < 1 
Here p I*, p 2* are the supporting functions of the sets Gr* , G2* , i.e. of the projec- 

tions of the sets G,, G, onto the orthogonal complement of the subspace M which we 
denote by Q; g* is the projection of the n-,dimensional vector g onto the subspace Q; 
the dimensionality of the vector I is the same as that of the subspace Q. 

The requirements imposed on the system (1. l), (1.2) can be formulated as follows. 
Condition 3.1. For all permissible values of z, ‘6, o satisfying the inequality 

e” (x, r, o) > 0 the minimum in (3.5) (or 3.6)) is attained on the unique vector 
z = z” (s, T, o). 

The function L = L (5, t) is defined by the formula 

(3.7) 

Here a > 0 is arbitrarily small and fro is the smallest root of the equation 

“) The supporting function pN (I) for an arbitrary convex closed set N C E, is defined 
by the formula pN (I) = max l’x for x E N, where 1 = {II,. . ,I,) is an n- dimensional 
vector. 
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&O (x0, to, a) = 0 (u > to) (3.8) 

On fulfilment of Condition 3.1 the function (3.7) satisfies requirements (l)-(3) for- 
mulated in Sect. 2. 

Let us describe briefly the basic propositions used to verify this statement. We define 
the domain D as the set of points (5, t} for which 

e” (5, 2, o) > 0 for t < o < X (3.9) 

The differentiability of function (3.7) in the domain D follows from the differentiabi- 
lity with respect to z and t of the function E’ = &’ (z, t, o) in the neighborhood of 

those points : { 5, t, a} for which E’ (s, t, o) > 0.. The existence of the derivatives 

of the function EO (z, t, o) can be demonstrated by applying Condition 3.1 to formula 

(3.5) (or (3.6)) (e. g. see [6, 131). 
The inclusion {I ‘, to} E D is fulfilled by virtue of the definitions of the quantity x 

and the domainD_ The second condition formulated in Sect. 2 follows in this case from 
the definitions of the quantity e” (z, t, CJ) and the domain D. 

The third requirement is also fulfilled for the function L = L (r, t) defined by 
(3.7). This can be verified by means of the inequality 

1 E’ (a, t, 0’) - 8’ (5, t, d’)l S k Id - CI” 1 for {z, t}~ G x [to, X] (3.10) 

6’,8” < x 

which follows directly from the definition of the quantity e” (5, t, o). 

Thus, function (3.7) satisfies conditions (l)-(3) of Sect. 2 provided that Condition 3.1 
is fulfilled. We also assume that system (1.1) and restrictions (1.2) are such that the 

following additional condition is satisfied. 

C o n d i t i on 3.2. Function (3.7) satisfies inequality (2.3) for X < 6’ . 
If Conditions 3.1 and 3.2 are fulfilled for the game problem under consideration, 

then function (3.7) satisfies all of the conditions formulated in Sect. 2. This means, by 
virtue of Theorem 2.1, that we can construct a strategy V=Va (t,z) defined by rela- 

tions (2.4),(3.7) which guarantees to the second player that the point x = z [t] will 
arrive at M not earlier than at the instant t = x = 6’ - a, where a > 0 is arbitra- 

rily small. We note that fulfilment of Condition 3.1 means that it is possible to con- 
struct a control U”(z, t) which guarantees to the first player the arrivalofobject( 1.1) 

at hf by the instant t =‘6”. The construction of this control u”( z, t) described for 

pursuit problems in 19, lo] is wholly applicable to our game problem. This can be veri- 
fied without going through the arguments of [9, lo], since, as we noted above, the prob- 
lem under consideration here can be interpreted as the problem of game encounter of 

objects (3.2) and (3.4). 
Thus, fulfilment of Conditions 3.1 and 3.2 means that there exist strategies u” (IC, 2), 

Va (a~, t) of which the first guarantees the arrival of the phase vector ~7: = IC [ tl at M 
for any strategy JJ’ (z, t) not later than at the instant t = 6’ ; the second strategy 
v, (a, t) guarantees a postponement in the arrival of the trajectory Z = I% it] at the 
set M until the instant 6’ - a (where a is arbitrarily small) for any choice of the 

strategy U (x,2). The strategy U” (x, t) is therefore the first player’s optimal strategy, 
and the strategy V, (5, t) guarantees to the second player a result 6” - a arbitrarily 
close (for small a) * to the optimal result equal to the instant 6 ‘. 
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Effective verification of Conditions 3.1 and 3.2 in the general case is difficult. Let 

us formulate the sufficient restrictions which must be imposed on the coefficients of 
system (1.1) and on the sets U*, v*, &f in order to ensure fulfflment of Conditions 3.1 
and 3.2 . 

1) The sets 

u* to, r) = x (o, r) B (r)U*r r* (o, .z) = x (u, z) c 1-r) ii* 

satisfy the condition 

u* to, r) =V* (0, r) + w (o, z) 
where w (o, Z) is some convex set. 

(3.11) 

‘2) For any vector u E U* there exists a vector v E V*such that 

X ((T, T) (B (-c) u - C (T) v) E W (a, T) for -r < (T < x (3.12) 

Verification of the above relations is simpler than the verification of Conditions 3.1 
and 3.2. In particular, conditions (3.11) and (3.12) are satisfied by the control example 
discussed in p]. and also by those game problems (1. Q(1.2) which can be interpreted 

as problems on the games encounter of monotype objects. 
We note that relations (3.1X).(3.12) with the conditions of [?] under which the control 

constructed in [4] is optimal, If the equation e” (go, to, o) L 0 has no solution, then 

the above construction guarantees to the second player a postponement of the arrival of 

the phase point at the manifolds for any arbitrarily long time x. 
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The approach developed in monograph [1] is used to consider the problem of control for 
a linear system with bounded phase coordinates. The properties of the solutions and of 

the boundary conditions for the corresponding associated system are discussed. Additional 
information is obtained about the Lagrange coefficients ; this information can be used to 
reduce solutions of the initial multidimensional problem to the minimization of a func- 

tion of a finite number of variables. 

1. Formulation of the problem. Let us consider the controlled motion 

described by the equation &./dt = A (t) z + B (t) n + W (t) (1.1) 

Here the vector x is n-dimensional, the control u is r-dimensional, and the matrices 

A (t), B (t) and the perturbation n-vector w (t) are continuous. 
Pro b 1 em 1.1. We are given system (1.1). boundary conditions 2 (t=) = XOL~ 

z (tb) = Q, and the restrictions 

vrai maxt IUj (t)l 1s Vj, ta < t < tB (isi> * * ‘) r, (1.2) 

on the control u E u, and 
1 irk (t) 1 < fk (t) (k= 1,. . et ‘4 (1.3) 

on the coordinates 5 (t) E X (t) . 
The functions fli (t) are absolutely continuous and positive. We are to bring system 

(1.1) from x, to ~a in the minimum time tBo - t, under restrictions (1.2). (1.3). 

2. The tolvability conditions. The maximum principle. The 
result of the present section is valid for all closed convex restrictions u E U, L+C E X 
on the instantaneous values of the controls and of the first LQ coordinates, provided that 

zero is an interior point of both U and X. 
Let us assume that ta is fixed and consider the following moment calculation problem: 

c . hj (tp, T) u(z) d-c = cja (j=I,...,n) 

s 

(2.1) 
h, (tl, IT) u (z) do + Z,(~) = Cki (k=l,. . ., m) 

for 
UE u, z(i) E 2 (ti) (2 = - X) (2.2) 

Here { ti} , the set of points (e.g. of the form ta + i (N) (la - ta) 2-N? where 
i (IV) \( 2N, N = 1, 2, 3, . . .) , is dense everywhere in the segment (*) It,, $1 ; 

*) See Note at the bottom of next page. 


